Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.092
Filtrar
1.
BMC Plant Biol ; 24(1): 274, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605295

RESUMO

Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.


Assuntos
Solanum tuberosum , Temperatura , Solanum tuberosum/metabolismo , Antocianinas/metabolismo , Temperatura Baixa , Fotossíntese , Tubérculos/genética
2.
PLoS One ; 19(4): e0297334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574179

RESUMO

Potato tubers are rich sources of various nutrients and unique sources of starch. Many genes play major roles in different pathways, including carbohydrate metabolism during the potato tuber's life cycle. Despite substantial scientific evidence about the physiological and morphological development of potato tubers, the molecular genetic aspects of mechanisms underlying tuber formation have not yet been fully understood. In this study, for the first time, RNA-seq analysis was performed to shed light on the expression of genes involved in starch biosynthesis during potato tuber development. To this end, samples were collected at the hook-like stolon (Stage I), swollen tips stolon (Stage II), and tuber initiation (Stage III) stages of tuber formation. Overall, 23 GB of raw data were generated and assembled. There were more than 20000 differentially expressed genes (DEGs); the expression of 73 genes involved in starch metabolism was further studied. Moreover, qRT-PCR analysis revealed that the expression profile of the starch biosynthesis DEGs was consistent with that of the RNA-seq data, which further supported the role of the DEGs in starch biosynthesis. This study provides substantial resources on potato tuber development and several starch synthesis isoforms associated with starch biosynthesis.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Perfilação da Expressão Gênica , Tubérculos/metabolismo , Metabolismo dos Carboidratos/genética , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 117(6): 1702-1715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334712

RESUMO

Potatoes (Solanum tuberosum L.) are a fundamental staple for millions of people worldwide. They provide essential amino acids, vitamins, and starch - a vital component of the human diet, providing energy and serving as a source of fiber. Unfortunately, global warming is posing a severe threat to this crop, leading to significant yield losses, and thereby endangering global food security. Industrial agriculture traditionally relies on excessive nitrogen (N) fertilization to boost yields. However, it remains uncertain whether this is effective in combating heat-related yield losses of potato. Therefore, our study aimed to investigate the combinatory effects of heat stress and N fertilization on potato tuber formation. We demonstrate that N levels and heat significantly impact tuber development. The combination of high N and heat delays tuberization, while N deficiency initiates early tuberization, likely through starvation-induced signals, independent of SELF-PRUNING 6A (SP6A), a critical regulator of tuberization. We also found that high N levels in combination with heat reduce tuber yield rather than improve it. However, our study revealed that SP6A overexpression can promote tuberization under these inhibiting conditions. By utilizing the excess of N for accumulating tuber biomass, SP6A overexpressing plants exhibit a shift in biomass distribution towards the tubers. This results in an increased yield compared to wild-type plants. Our results highlight the role of SP6A overexpression as a viable strategy for ensuring stable potato yields in the face of global warming. As such, our findings provide insights into the complex factors impacting potato crop productivity.


Assuntos
Solanum tuberosum , Humanos , Temperatura , Nitrogênio/metabolismo , Fertilização , Tubérculos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316513

RESUMO

Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.


Assuntos
Genoma Mitocondrial , Pinellia , Plantas Medicinais , Pinellia/genética , Genoma Mitocondrial/genética , Filogenia , Plantas Medicinais/genética , Tubérculos
5.
Phytochemistry ; 220: 114033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373572

RESUMO

Ten previously undescribed cucurbitane-type triterpenoids, namely hemslyencins A-F (1-6) and hemslyencosides A-D (7-10), together with twenty previously reported compounds (11-30), were isolated from the tubers of Hemsleya chinensis. Their structures were elucidated by unambiguous spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR data). Hemslyencins A and B (1 and 2) possessing unique 9, 11-seco-ring system with a six-membered lactone moiety, were the first examples among of the cucurbitane-type triterpenoids, and hemslyencins C and D (3 and 4) and hemslyencoside D (10) are the infrequent pentacyclic cucurbitane triterpenes featuring a 6/6/6/5/6 fused system. The cytotoxic activities of all isolated compounds were evaluated against MCF-7, HCT-116, HeLa, and HepG2 cancer cells, and their structure-activity relationships (SARs) was discussed as well. Compounds 17, 25, and 26 showed significant cytotoxic effects with IC50 values ranging from 1.31 to 9.89 µM, among which compound 25 induced both apoptosis and cell cycle arrest at G2/M phase in a dose dependent manner against MCF-7 cells.


Assuntos
Antineoplásicos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/química , Glicosídeos/química , Tubérculos/química , Células HeLa , Estrutura Molecular
6.
Artigo em Chinês | MEDLINE | ID: mdl-38311951

RESUMO

Unicorn lotus is a plant tuber in the araceae family, which has therapeutic effects such as dispelling cold and dampness, dispelling wind and phlegm, and treating stroke. However, acute poisoning of fresh Unicorn lotus has been rarely reported domestically and internationally. This article reports a case of poisoning caused by chewing unicorn lotus. The patient experienced numbness in the lips, swelling and rupture of the oral cavity, continuous salivation, difficulty swallowing and obvious burning sensation in the throat, accompanied by shortness of breath and mild hypoxemia. After receiving comprehensive treatments such as oxygen therapy, electrocardiographic monitoring, cleaning of necrotic oral mucosa, anti infection, inhibition of oral salivary secretion, and nutritional support, the patient finally recovered and was discharged.


Assuntos
Araceae , Humanos , Araceae/envenenamento , Tubérculos/envenenamento
7.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338975

RESUMO

Climate change-induced heat stress (HS) increasingly threatens potato (Solanum tuberosum L.) production by impacting tuberization and causing the premature sprouting of tubers grown during the hot season. However, the effects of post-harvest HS on tuber sprouting have yet to be explored. This study aims to investigate the effects of post-harvest HS on tuber sprouting and to explore the underlying transcriptomic changes in apical bud meristems. The results show that post-harvest HS facilitates potato tuber sprouting and negates apical dominance. A meticulous transcriptomic profiling of apical bud meristems unearthed a spectrum of differentially expressed genes (DEGs) activated in response to HS. During the heightened sprouting activity that occurred at 15-18 days of HS, the pathways associated with starch metabolism, photomorphogenesis, and circadian rhythm were predominantly suppressed, while those governing chromosome organization, steroid biosynthesis, and transcription factors were markedly enhanced. The critical DEGs encompassed the enzymes pivotal for starch metabolism, the genes central to gibberellin and brassinosteroid biosynthesis, and influential developmental transcription factors, such as SHORT VEGETATIVE PHASE, ASYMMETRIC LEAVES 1, SHOOT MERISTEMLESS, and MONOPTEROS. These findings suggest that HS orchestrates tuber sprouting through nuanced alterations in gene expression within the meristematic tissues, specifically influencing chromatin organization, hormonal biosynthesis pathways, and the transcription factors presiding over meristem fate determination. The present study provides novel insights into the intricate molecular mechanisms whereby post-harvest HS influences tuber sprouting. The findings have important implications for developing strategies to mitigate HS-induced tuber sprouting in the context of climate change.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Amido/metabolismo , Tubérculos/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396922

RESUMO

Potato is an important food crop. After harvest, these tubers will undergo a period of dormancy. Brassinosteroids (BRs) are a new class of plant hormones that regulate plant growth and seed germination. In this study, 500 nM of BR was able to break the dormancy of tubers. Additionally, exogenous BR also upregulated BR signal transduction genes, except for StBIN2. StBIN2 is a negative regulator of BR, but its specific role in tuber dormancy remains unclear. Transgenic methods were used to regulate the expression level of StBIN2 in tubers. It was demonstrated that the overexpression of StBIN2 significantly prolonged tuber dormancy while silencing StBIN2 led to premature sprouting. To further investigate the effect of StBIN2 on tuber dormancy, RNA-Seq was used to analyze the differentially expressed genes in OE-StBIN2, RNAi-StBIN2, and WT tubers. The results showed that StBIN2 upregulated the expression of ABA signal transduction genes but inhibited the expression of lignin synthesis key genes. Meanwhile, it was also found that StBIN2 physically interacted with StSnRK2.2 and StCCJ9. These results indicate that StBIN2 maintains tuber dormancy by mediating ABA signal transduction and lignin synthesis. The findings of this study will help us better understand the molecular mechanisms underlying potato tuber dormancy and provide theoretical support for the development of new varieties using related genes.


Assuntos
Lignina , Solanum tuberosum , Lignina/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos , Desenvolvimento Vegetal , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética
9.
Food Chem ; 443: 138556, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290299

RESUMO

Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.


Assuntos
Aprendizado Profundo , Solanum tuberosum , Solanum tuberosum/química , Proteínas de Plantas/metabolismo , Tubérculos/química , Carboidratos/análise
10.
J Sci Food Agric ; 104(7): 3842-3852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38233738

RESUMO

BACKGROUND: Potato is the most important non-grain crop worldwide, whose quality characteristics are always affected by temporal and spatial variability. Knowledge of the performance consistency of quality characteristics over long periods could prove very important to identify which quality traits are less variable over time, and therefore provide greater guarantees of stability. In this research, variations in physicochemical and nutritional traits of tubers over five consecutive growing seasons of two potato genotypes (Arizona and Vogue) were monitored in two locations. RESULTS: Although qualitative performances of genotypes fluctuated across the seasons in both locations, two physicochemical traits (pH and dry matter content) and starch content showed less variability throughout the five seasons compared to total soluble solids and most of the nutritional traits (namely reducing sugars, citric acid, vitamin C, total phenolics and antioxidant capacity), which were considerably influenced by weather conditions. CONCLUSION: The results suggest that pH, dry matter content and starch content traits could be used advantageously in studies of temporal stability in potatoes. This approach could prove useful in providing scientific support for the setup of potato protected geographical identifications. © 2024 Society of Chemical Industry.


Assuntos
Solanum tuberosum , Solanum tuberosum/química , Amido/análise , Fenótipo , Tempo (Meteorologia) , Estações do Ano , Tubérculos/química
11.
Sci Rep ; 14(1): 1277, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218867

RESUMO

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces "ScabyNet", an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.


Assuntos
Aprendizado Profundo , Solanum tuberosum , Solanum tuberosum/genética , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Fenótipo
12.
New Phytol ; 241(4): 1676-1689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044709

RESUMO

In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Transcriptoma , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Ann Bot ; 133(2): 365-378, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38099505

RESUMO

BACKGROUND AND AIMS: Plants can propagate generatively and vegetatively. The type of propagation and the resulting propagule can influence the growth of the plants, such as plant architectural development and pattern of biomass allocation. Potato is a species that can reproduce through both types of propagation: through true botanical seeds and seed tubers. The consequences of propagule type on the plant architectural development and biomass partitioning in potatoes are not well known. We quantified architectural differences between plants grown from these two types of propagules from the same genotype, explicitly analysing branching dynamics above and below ground, and related these differences to biomass allocation patterns. METHODS: A greenhouse experiment was conducted, using potato plants of the same genotype but grown from two types of propagules: true seeds and seed tubers from a plant grown from true seed (seedling tuber). Architectural traits and biomass allocation to different organs were quantified at four developmental stages. Differences between true-seed-grown and seedling-tuber-grown plants were compared at the whole-plant level and at the level of individual stems and branches, including their number, size and location on the plant. KEY RESULTS: A more branched and compact architecture was produced in true-seed-grown plants compared with seedling-tuber-grown plants. The architectural differences between plants grown from true seeds and seedling tubers appeared gradually and were attributed mainly to the divergent temporal-spatial distribution of lateral branches above and below ground on the main axis. The continual production of branches in true-seed-grown plants indicated their indeterminate growth habit, which was also reflected in a slower shift of biomass allocation from above- to below-ground branches, whereas the opposite trend was found in seedling-tuber-grown plants. CONCLUSIONS: In true-seed-grown plants, lateral branching was stronger and determined whole-plant architecture and plant function with regard to light interception and biomass production, compared with seedling-tuber-grown plants. This different role of branching indicates that a difference in preference between clonal and sexual reproduction might exist. The divergent branching behaviours in true-seed-grown and seedling-tuber-grown plants might be regulated by the different intensity of apical dominance, which suggests that the control of branching can depend on the propagule type.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Tubérculos , Fenótipo , Genótipo , Desenvolvimento Vegetal , Plântula
14.
Plant Physiol Biochem ; 206: 108279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128226

RESUMO

Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.


Assuntos
Fallopia multiflora , Estilbenos , Fallopia multiflora/genética , Fallopia multiflora/química , Antraquinonas/análise , Tubérculos/química , Solo , Concentração de Íons de Hidrogênio
15.
Planta ; 259(1): 14, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070043

RESUMO

MAIN CONCLUSION: Understanding BEL transcription factors roles in potato and tomato varies considerably with little overlap. The review suggests reciprocal use of gained results to proceed with the knowledge in both crops The proper development of organs that plants use for reproduction, like fruits or tubers, is crucial for the survival and competitiveness of the species and thus subject to strict regulations. Interestingly, the controls of potato (Solanum tuberosum) tuber and tomato (S. lycopersicum) fruit development use common mechanisms, including the action of the BEL transcription factors (TFs). Although more than ten BEL genes have been identified in either genome, only a few of them have been characterized. The review summarizes knowledge of BEL TFs' roles in these closely related Solanaceae species, focusing on those that are essential for tuberization in potato, namely StBEL5, StBEL11 and StBEL29, and for fruit development in tomato - SlBEL11, SlBL2 and SIBL4. Comprehension of the roles of individual BEL TFs, however, is not yet sufficient. Different levels of understanding of important characteristics are described, such as BEL transcript accumulation patterns, their mobility, BEL protein interaction with KNOX partners, subcellular localisation, and their target genes during initiation and development of the organs in question. A comparison of the knowledge on BEL TFs and their mechanisms of action in potato and tomato may provide inspiration for faster progress in the study of both models through the exchange of information and ideas. Both crops are extremely important for human nutrition. In addition, their production is likely to be threatened by the upcoming climate change, so there is a particular need for breeding using a deep knowledge of control mechanisms.


Assuntos
Solanum lycopersicum , Solanum tuberosum , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Melhoramento Vegetal , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Verduras/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139361

RESUMO

In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting remains ambiguous. Here, we tried to recreate tuber secondary growth using in vitro stemmed microtubers (MTs) (with the nodal stem attached) and MT halves (with the nodal stem entirely removed). Our experiments showed that GA alone could initiate the sprouting of stemmed microtubers; however, GA failed to initiate MT halves unless 6-benzyladenine, a synthetic cytokinin CK, was co-applied. Here, we analyzed the transcriptional profiles of sprouting buds using these in vitro MTs. RNA-seq analysis revealed a downregulation of cytokinin-activated signaling but an upregulation of the "Zeatin biosynthesis" pathway, as shown by increased expression of CYP735A, CISZOG, and UGT85A1 in sprouting buds; additionally, the upregulation of genes, such as IAA15, IAA22, and SAUR50, associated with auxin-activated signaling and one abscisic acid (ABA) negative regulator, PLY4, plays a vital role during sprouting growth. Our findings indicate that the role of the nodal stem is synonymous with CK in sprouting growth, suggesting that CK signaling and homeostasis are critical to supporting GA-induced sprouting. To effectively control tuber sprouting, more effort is required to be devoted to these critical genes.


Assuntos
Citocininas , Solanum tuberosum , Citocininas/metabolismo , Solanum tuberosum/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Perfilação da Expressão Gênica , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Tubérculos/metabolismo
17.
Theor Appl Genet ; 137(1): 12, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112758

RESUMO

Root and tuber crop breeding is at the front and center of CIP's science program, which seeks to develop and disseminate sustainable agri-food technologies, information and practices to serve objectives including poverty alleviation, income generation, food security and the sustainable use of natural resources. CIP was established in 1971 in Peru, which is part of potato's center of origin and diversity, with an initial mandate on potato and expanding to include sweetpotato in 1986. Potato and sweetpotato are among the top 10 most consumed food staples globally and provide some of the most affordable sources of energy and vital nutrients. Sweetpotato plays a key role in securing food for many households in Africa and South Asia, while potato is important worldwide. Both crops grow in a range of conditions with relatively few inputs and simple agronomic techniques. Potato is adapted to the cooler environments, while sweetpotato grows well in hot climates, and hence, the two crops complement each other. Germplasm enhancement (pre-breeding), the development of new varieties and building capacity for breeding and variety testing in changing climates with emphasis on adaptation, resistance, nutritional quality and resource-use efficiency are CIP's central activities with significant benefits to the poor. Investments in potato and sweetpotato breeding and allied disciplines at CIP have resulted in the release of many varieties some of which have had documented impact in the release countries. Partnership with diverse types of organizations has been key to the centers way of working toward improving livelihoods through crop production in the global South.


Assuntos
Solanum tuberosum , Melhoramento Vegetal/métodos , Tubérculos , Produtos Agrícolas/genética , África
18.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958738

RESUMO

A significant number of discoveries in past two decades have established the importance of long-distance signaling in controlling plant growth, development, and biotic and abiotic stress responses. Numerous mobile signals, such as mRNAs, proteins, including RNA-binding proteins, small RNAs, sugars, and phytohormones, are shown to regulate various agronomic traits such as flowering, fruit, seed development, and tuberization. Potato is a classic model tuber crop, and several mobile signals are known to govern tuber development. However, it is unknown if these mobile signals have any synergistic effects on potato crop improvement. Here, we employed a simple innovative strategy to test the cumulative effects of a key mobile RNA, StBEL5, and its RNA-binding proteins, StPTB1, and -6 on tuber productivity of two potato cultivars, Solanum tuberosum cv. Désirée and subspecies andigena, using a multi-gene stacking approach. In this approach, the coding sequences of StBEL5 and StPTB1/6 are driven by their respective native promoters to efficiently achieve targeted expression in phloem for monitoring tuber productivity. We demonstrate that this strategy resulted in earliness for tuberization and enhanced tuber productivity by 2-4 folds under growth chamber, greenhouse, and field conditions. This multi-gene stacking approach could be adopted to other crops, whose agronomic traits are governed by mobile macromolecules, expanding the possibilities to develop crops with improved traits and enhanced yields.


Assuntos
RNA , Solanum tuberosum , RNA/metabolismo , Solanum tuberosum/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Sci Rep ; 13(1): 20468, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993484

RESUMO

The basis for the study was a field experiment conducted in 2012-2014 in the production fields of multi-branch Soleks company in Wojnów, the district of Siedlce in eastern Poland. The experiment was established in a split-plot arrangement as a two-factor experiment in three replications. The first factor were: three cultivars of edible potato-Bartek, Gawin, Honorata, and the second factor were: five objects of potato cultivation with herbicides and biostimulants: 1-Control object-without chemical protection, 2-herbicide Harrier 295 ZC, 3-herbicide Harrier 295 ZC + biostimulant Kelpak SL, 4-herbicide Sencor 70 WG, 5-herbicide Sencor 70 WG + biostimulant Asahi SL. The aim of the study was to reduce the non-commercial potato yield and improve the yield structure through the application of biostimulants and herbicides, and to determine the relationship between weed infestation and tuber yield. The least amount of weeds and the best destruction efficiency were obtained after the application of herbicide Sencor 70 WG + biostimulant Asahi SL and herbicide Harrier 295 ZC + biostimulant Kelpak SL. Effective reduction of weed infestation contributed to improvement of yield structure and reduction of potato non-commercial yield. Based on correlation coefficients, a significant relationship between weed infestation and potato non-commercial yield was shown.


Assuntos
Herbicidas , Solanum tuberosum , Herbicidas/farmacologia , Solanum tuberosum/química , Plantas Daninhas , Polônia , Tubérculos , Controle de Plantas Daninhas
20.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003283

RESUMO

Potato is an important food crop worldwide. Brassinosteroids (BRs) are widely involved in plant growth and development, and BIN2 (brassinosteroid insensitive 2) is the negative regulator of their signal transduction. However, the function of BIN2 in the formation of potato tubers remains unclear. In this study, transgenic methods were used to regulate the expression level of StBIN2 in plants, and tuber related phenotypes were analyzed. The overexpression of StBIN2 significantly increased the number of potatoes formed per plant and the weight of potatoes in transgenic plants. In order to further explore the effect of StBIN2 on the formation of potato tubers, this study analyzed BRs, ABA hormone signal transduction, sucrose starch synthase activity, the expression levels of related genes, and interacting proteins. The results show that the overexpression of StBIN2 enhanced the downstream transmission of ABA signals. At the same time, the enzyme activity of the sugar transporter and the expression of synthetic genes were increased in potato plants overexpressing StBIN2, which also demonstrated the upregulation of sucrose and the expression of the starch synthesis gene. Apparently, StBIN2 affected the conversion and utilization of key substances such as glucose, sucrose, and starch in the process of potato formation so as to provide a material basis and energy preparation for forming potatoes. In addition, StBIN2 also promoted the expression of the tuber formation factors StSP6A and StS6K. Altogether, this investigation enriches the study on the mechanism through which StBIN2 regulates potato tuber formation and provides a theoretical basis for achieving a high and stable yield of potato.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Açúcares/metabolismo , Carboidratos , Amido/metabolismo , Sacarose/metabolismo , Tubérculos/metabolismo , Hormônios/metabolismo , Transdução de Sinais , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...